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1. INTRODUCTION

Road surface irregularities play a crucial role in problems related to the interaction of
moving vehicles with structures carrying them. When a vehicle traverses an irregularity,
sizable dynamic contact (tire) forces can occur, which a!ect pavement wear and, if the
irregularity is located on the bridge or its approach, result in an increase in bridge vibration.
Note that uneven road pro"le is the main cause of high-magnitude bridge vibration. Indeed,
the analysis of numerical results reported in the literature, as well as our own numerical
experiments, show that, for vehicle velocities of interest, the dynamic forces acting on the
bridge are small compared to the vehicle weight in the case of a smooth bridge surface and
zero bridge and vehicle initial conditions. As a result, the dynamic increment [1]
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is the peak static de#ection, is also
small in this case. It can be shown, e.g., that if the bridge is modeled as a simply supported
beam, the DI is not greater than 10}15% for vehicle velocities encountered in practice. On
the other hand, some researchers report very high values of the DI (more than 100% in
reference [1]) measured in "eld experiments, which can only be explained by large dynamic
tire forces due to road surface irregularities on the bridge or its approaches. As stated in
reference [2], &&the surface pro"le of a bridge and its approaches are fundamental to the
response of the truck suspension and in turn the dynamic response of the bridge''.

The aim of this work is to derive an analytical expression for the magnitude of the contact
force arising after the traversal of an isolated road surface irregularity by a vehicle modeled
as a single-degree-of-freedom (s.d.o.f.) oscillator. The purpose of this analytical result is to
provide a useful design formula, which explicitly shows dependence of the maximum
contact force on the oscillator and irregularity parameters. Although a real vehicle can
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adequately be modelled only by a system with many degrees of freedom, this formula is still
very important. Two basic reasons to consider the s.d.o.f. oscillator model are as follows.
First, the problem of "nding tire forces due to road surface irregularities for a m.d.o.f. vehicle
model can be reduced to that for independent s.d.o.f. oscillators. An appropriate technique
has already been developed by the authors of this work, and a paper on this subject is being
prepared for publication. Second, the use of a s.d.o.f. vehicle model is often justi"ed in
problems related to bridge vibration. This is in view of the fact that only vehicle vibration
with a frequency close to the bridge fundamental frequency considerably a!ects the bridge
response; i.e., vehicle vibrations at other frequencies need not be taken into account. For
example, for long-span bridges with low "rst eigenfrequency, the high-frequency (10}15 Hz)
axle-hop vibration has negligible e!ect on the bridge vibration, such that the modeling of
a vehicle as a sprung mass with its eigenfrequency corresponding to the body-bounce mode
may be su$cient. On the other hand, for a short-span bridge with a high fundamental
frequency (10 Hz or higher), the low-frequency (1)5}4 Hz) body-bounce or pitch modes have
small e!ect on the maximum bridge response [1], and one can consider a s.d.o.f. oscillator
corresponding to the axle-hop mode.

2. PROBLEM STATEMENT AND ANALYSIS

We consider an isolated irregularity, further referred to as pothole, of the form
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where a and b'0 are the pothole &&depth'' and &&width'', respectively (negative values of
a correspond to bumps). As discussed in reference [3], this function &&is capable of expressing
diverse types of irregularities''.

In this paper, we restrict our consideration to undamped oscillators. The resulting
equations in the case of a damped oscillator are much more complicated; and the extension
of the results obtained to this case will be discussed in another paper. The equation
governing vertical vibration of the oscillator is well known to be

mzK"!k (z(t)!r(vt)). (2)

The oscillator initial conditions are assumed to be zero, z(0)"zR (0)"0. Our goal is to "nd
the magnitude of the elastic force kz (t) acting on the road from the oscillator after passing
the pothole.

For t'¹"b/v, r(vt)"0, the oscillator freely vibrates, and the magnitude of the elastic
force is F"kZ, where Z is the amplitude of the oscillator free vibration,

Z"�z�(¹)#(zR (¹)/�
�
)�. (3)

The solution to equation (2) is well known to be
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where �
�
"�k/m is the oscillator eigenfrequency and �

	
"2�v/b. Integrating the

right-hand side of equation (4) gives
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Substituting t"¹, noting that �
	
¹"2�, and simplifying give
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Substituting equations (6) and (7) into equation (3), we "nd the amplitude of the free
vibration
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where f
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�
/2� is the oscillator eigenfrequency in Hertz, the number of parameters

reduces to two, and equation (8) takes the form
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As can be seen, the dependence of Z on the pothole depth a is linear, and the remaining
three parameters (�

�
, v, and b) are combined into one such that the amplitude of free

vibration is governed by the unique function of one variable,
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The function �(�), depicted in Figure 1 by solid line, may be called the dynamic ampli,cation
factor of the pothole; it shows how many times the amplitude of the free vibration (t'¹) is
greater (less) than the pothole depth.

Multiplying both sides of equation (10) by k, we get the magnitude of the elastic force

F"F
��
�(�), (12)

where F
��
"ka is the static force required to extend the spring by a. Thus, �(�) is the value of

the magnitude of the dynamic force in terms of the static force ka.



Figure 1. Dynamic ampli"cation factor for the &&cosine'' pothole (1) (00) and the dimensionless contact force in
the pothole (} } } }).
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By using the plot for the dynamic ampli"cation factor, one can immediately estimate the
magnitude of the contact force arising after passing a pothole (bump) for any given set of
parameters. Given the oscillator parameters, one can easily "nd the interval of &&dangerous''
pothole widths for a speci"ed velocity, or, for a given pothole, the range of &&dangerous''
velocities.

In certain applications, the maximum of the contact force while the oscillator is in the
pothole, f

�
(t)"k(z (t)!r (vt)), t(¹, may also be of interest. Substituting t(¹ into

equation (5) and simplifying the resulting equation, we "nd the contact force in the pothole,
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Note that, since the total contact force is the sum of the oscillator weight and the dynamic
contact force f

�
(t), only negative values of the latter force are of interest. Introducing the

notation �"�
	
t and noting that 0)�)2�, we "nd that the maximum of the

dimensionless downward contact force is given by
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The minimum on the right-hand side of the last equation has been found numerically, and
the function �� (�) is depicted in Figure 1 by the dashed line. As can be seen, the dynamic
ampli"cation factor provides a sound estimate for the maximum contact force in the
pothole (the upper bound in the range of �, where the dynamic e!ect of a pothole is the most
pronounced).

3. NUMERICAL ILLUSTRATION

The goal of this section is to demonstrate the application of the results obtained to the
problem of bridge vibration due to a moving vehicle. Clearly, the presence of a pothole on
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the bridge or its approach results in excitation of vehicle vibration and, thus, in an
additional dynamic force acting on the bridge, the e!ect of which is not known a priori.
However, this e!ect can be readily estimated in the special case where the frequency of the
dynamic force (oscillator eigenfrequency f

�
) matches the fundamental frequency of the

bridge. It is evident from physical considerations that the maximum bridge displacement
grows with increasing amplitude of the harmonic force. Thus, in this case*the worst from
the bridge standpoint*, we can estimate the relative e!ect of di!erent potholes on the
bridge vibration and determine &&dangerous'' pothole widths. Substituting the vehicle
velocity v, eigenfrequency f

�
and �"0)8 into equation (9) and solving for b, we "nd the

pothole width for which the amplitude of the dynamic force and, thus, the peak bridge
response are maximized for the given simple vehicle model.

The numerical experiments described below illustrate this. For the bridge model, we
considered a proportionally damped simply supported beam with a smooth surface. The
beam parameters were taken from reference [4] and are as follows: length ¸"40 m,
bending sti!ness EI"1)275�10�� Nm�, and mass per unit length �"1)2�10� kg/m. The
damping was set to 1)5% of critical. The fundamental frequency of the beam is 3)20 Hz. The
initial conditions of the beam in all experiments were zero. The vehicle moving with velocity
v"20 m/s was modelled by an oscillator of mass m"4�10� kg. A spring sti!ness
k"1)6�10� N/m was employed to make the oscillator eigenfrequency f

�
+3)18 Hz match

the fundamental frequency of the beam. To numerically solve the moving oscillator
problem, the method described in references [5, 6] was used, which is based on the
expansion of the solution in a series in terms of the beam eigenfunctions.

We considered three potholes of the same depth a"1 cm but di!erent widths,
b
�
"0)5 m, b

�
"5 m, and b

�
"12 m, located on the approach to the beam immediately

before its left end. The amplitude of the dynamic force arising after passing the pothole in
each case can easily be determined from equations (9), (11), and (12). Indeed, substituting f

�
,

v, and b
�
, i"1, 2, 3, into equation (9), we "nd the corresponding values of �: �

�
+0)08,

�
�
+0)8, and �

�
+1)9. As can be seen from Figure 1, the dynamic force in the case of the

second pothole is most considerable (�(�
�
)+1)6), whereas the "rst (� (�

�
)+0)25) and third

(�(�
�
)+0)1) potholes do not result in very large dynamic forces. By means of equation (12),

we easily "nd that the amplitudes of the dynamic forces in the three cases are about 10%,
67%, and 4%, respectively, of the oscillator weight and, thus, get an idea of the increase in
the maximum beam displacement in each case.

The results of numerical modelling shown in Figure 2 substantiate the a priori
conclusions. The solid thin curve shows the displacement of the beam mid-point in the case
of the pothole of width b

�
"5 m. The dashed (1) and dotted (2) curves show the

displacements corresponding to the short (b
�
"0)5 m) and long (b

�
"12 m) wavelength

potholes. For comparison, the bold line in Figure 2 shows the time history of the
displacement of the beammid-point in the case where the oscillator enters the left end of the
beam with zero initial conditions (no potholes).

This "gure clearly demonstrates that the dynamic e!ect of a pothole strongly depends on
its width. Note also that, although not shown in the "gure, the bold line corresponding to
the absence of a pothole is very close to the moving force solution (the solution obtained by
assuming the moving force acting on the beam equal to the weight of the vehicle) (this is
illustrated, e.g., in reference [4]), which, in turn, is close to the static solution. This
substantiates the statement in the Introduction about the importance of considering road
surface irregularities and illustrates the observation that matching the oscillator and bridge
eigenfrequencies alone does not necessarily result in an increase in bridge vibration. Rather,
the increase takes place when the road surface on the bridge or its approaches contains
irregularities of appropriate wavelengths.



Figure 2. Displacements of the beam midpoint due to the moving oscillator: no potholes (==), pothole of
width b"5 m (**), b"0)5 m (} } } }, 1) and b"12 m () ) ) ) ) ), 2).
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It should be noted that, in practice, a small irregularity (a"1 cm) cannot result in such an
increase in bridge vibration, since, due to damping inherent in the vehicle suspension, the
oscillator eigenvibrations reduce rapidly. However, a high-magnitude bridge response,
similar to that depicted in Figure 2 by the thin solid line, may still take place if there are
many road surface irregularities of appropriate wavelength located not only on the bridge
approach but also on the bridge itself. The results of "eld experiments presented in reference
[1, Figure 6] illustrate this point.

4. RELATIONSHIP TO SHOCK SPECTRUM

The reader may notice the resemblance of the plot in Figure 1 to a shock spectrum. For
example, a plot similar to that in Figure 1 can be found in reference [7, Section 4.5,
Figure 4.18]. It shows the dependence of the maximum response of a s.d.o.f. oscillator
subjected to a half-sine force pulse on the oscillator eigenfrequency. This is not surprising,
since traversing of a road surface irregularity by a moving oscillator can be interpreted as
a force pulse acting on the stationary oscillator. It can be shown that, given that the pothole
and the force pulse have the same shape, the dynamic ampli"cation factor for the pothole
and the shock spectrum are essentially the same functions. This implies, in particular, that
one can take advantage of some results related to shock spectra available in the literature to
get the dynamic ampli"cation factor for a pothole.

To illustrate this, we will "nd the dynamic ampli"cation factor for the pothole described
by the half-sine function,

r (x)"�
!a sin

�x
b

, 0)x)b,

0, x(0, x'b.
(13)

Potholes (1) and (13) have the same width and depth but di!er in their "rst derivatives:
function (1) is smooth, whereas the "rst derivative of function (13) has jumps at x"0 and



Figure 3. Dynamic ampli"cation factor for the &&half-sine'' pothole (13) (==) and that for the &&cosine'' pothole
(1) (} } } }).
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x"b. Using the shock spectrum derived in reference [7, equation (4.53)], we immediately
get the dynamic ampli"cation factor for the &&half-sine'' pothole in terms of � de"ned by
equation (9),

�
�
(�)"

4�
�1!4�� �

�cos���. (14)

The function �
�
(�) is shown in Figure 3. For comparison, the dynamic ampli"cation factor

for the &&cosine'' pothole (1) is depicted by the dashed line.
By means of the technique used in this paper (or that employed in reference [7]), one can
"nd the dynamic ampli"cation factors for potholes described by di!erent functions.
However, since any analytical description of an actual road surface irregularity is inevitably
an approximation, the two types of potholes discussed above seem to be su$cient from
a practical standpoint. Thus, pothole (1) can be used for modelling &&smooth'' isolated road
surface irregularities, whereas equation (13) is appropriate for modelling an irregularity
with &&non-smooth'' edges. For example, it can be checked directly that potholes described
by polynomials of second and fourth degrees [8] are well approximated by the &&half-sine''
(13) and &&cosine'' (1) potholes. It is evident then from physical considerations that the
dynamic ampli"cation factors for those &&polynomial'' potholes are reasonably represented
by the functions depicted in Figure 3.

5. CONCLUDING REMARKS

Analytical expressions for the magnitude of the dynamic contact force arising after
traversing of a pothole by a moving s.d.o.f. oscillator have been derived for two types of
potholes (bumps). It has been shown that the dependence of the magnitude of the dynamic
force on pothole width, oscillator eigenfrequency and velocity is described by a unique,
easily employed function of one variable, the dynamic ampli"cation factor for the pothole.
The dependence of the force on the pothole depth and the spring sti!ness is shown to be
linear.
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The dynamic ampli"cation factor can be e$ciently used to evaluate &&dangerous'' pothole
parameters for a given bridge and vehicle modelled as a s.d.o.f. oscillator or, for a given
pothole, to "nd &&dangerous'' velocities of the vehicle. The analytical relations derived in this
work can be used to predict dynamic forces in a more general case, where the vehicle is
modeled as a m.d.o.f. system. This work is presently in progress.

The importance of considering uneven road pro"le in bridge-related problems has been
noted and illustrated. Numerical results con"rm that matching the vehile and bridge
eigenfrequencies does not necessarily result in large bridge vibration, which will occur when
the corresponding vehicle vibration is excited by road surface irregularities of appropriate
wavelength. The relationship of the dynamic ampli"cation factor to the shock spectrum has
been noted.
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